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Phase-space structure of two-dimensional excitable localized structures
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In this work we characterize in detail the bifurcation leading to an excitable regime mediated by localized
structures in a dissipative nonlinear Kerr cavity with a homogeneous pump. Here we show how the route can
be understood through a planar dynamical system in which a limit cycle becomes the homoclinic orbit of a
saddle point (saddle-loop bifurcation). The whole picture is unveiled, and the mechanism by which this
reduction occurs from the full infinite-dimensional dynamical system is studied. Finally, it is shown that the
bifurcation leads to an excitability regime, under the application of suitable perturbations. Excitability is an
emergent property for this system, as it emerges from the spatial dependence since the system does not exhibit

any excitable behavior locally.
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I. INTRODUCTION

Localized structures (LS), or dissipative solitons, are spa-
tiotemporal structures that appear in certain dissipative me-
dia [1]. In particular, they have been found in a variety of
systems, such as chemical reactions [2,3], gas discharges [4],
or fluids [1], among others. They are also found in optical
cavities, due to the interplay of different effects, like diffrac-
tion, nonlinearity, driving, and dissipation [5,6]. These struc-
tures, also known in this field as cavity solitons, have to be
distinguished from conservative solitons found, for example,
in propagation in fibers, for which there is a continuous fam-
ily of solutions depending, e.g., on the initial conditions. In-
stead, dissipative solitons are unique once the parameters of
the system have been fixed. This fact makes these structures
potentially useful in optical (i.e., fast and spatially dense)
storage and processing of information [6-8].

Here we consider the dynamics of LS in Kerr cavities,
also known as Kerr cavity solitons, that arise as a conse-
quence of a modulational (namely, a pattern-forming) insta-
bility of a homogeneous solution. In particular, they exist in
the parameter range where the homogeneous solution coex-
ists with subcritical (hexagonal) patterns. They share some
properties with propagating spatial (conservative) solitons in
a Kerr medium, but there are interesting differences. While
in one transverse dimension (1D) Kerr spatial solitons are
stable, it is well known that their 2D counterparts are un-
stable against self-focusing collapse [9]. The stability and
dynamics of 2-D Kerr cavity solitons are thus of particular
interest, and their existence and stability has been studied in
several papers [10-12].

Localized structures may develop instabilities like start
moving, breathing, or oscillating. In the latter case, LS oscil-
late in time while remaining stationary in space, like the
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oscillons found in a vibrated layer of sand [13]. Oscillating
LS are autonomous oscillons, and have been reported both in
optical [11,12,14] and chemical systems [15], and appear
when the LS exhibits a Hopf bifurcation. In the present work
we report on a route in which autonomous oscillating LS are
destroyed, leading to an excitability regime, extending upon
the results advanced in letter form in Ref. [16].

Typically a system is said to be excitable if while it sits at
a stable fixed point, perturbations beyond a certain threshold
induce a large response before coming back to the rest state.
In phase space [17,18] excitability occurs for parameter re-
gions where a stable fixed point is close to a bifurcation in
which an oscillation is created. Basically, there are two types
of excitability: one characterized by a response time (to
come back to the fixed point) within a relatively narrow
range (also called Class II) and occurring in the well-known
FitzHugh-Nagumo model, and also the case in which excit-
ability is mediated by a saddle point (also called Class I) and
that exhibits an unbounded distribution of response times.
The route to excitability reported here corresponds to the
latter type. An interesting feature of this system is that, while
typically, in excitable media excitability is also found locally,
i.e., in the zero-dimensional system, here we report a system
in which excitability is an emergent property: it is not present
at the local level but it appears through a property of a spa-
tiotemporal structure exhibited by the system.

In the route reported in this work oscillating LS are made
unstable in a global bifurcation, namely, a saddle-loop bifur-
cation, in which a limit cycle becomes the homoclinic orbit
of a saddle point. This bifurcation may occur generically in
two-variable continuous dynamical systems. Instead, the ex-
tended system studied here lives in an infinite-dimensional
phase space, and, moreover, does not exhibit a spectrum with
two slow modes that clearly dominate the dynamics, so a
study is performed to show how the relevant dynamical be-
havior can be reduced to a two-mode representation. This
reduction is a common and powerful procedure to study the
dynamics of spatial systems exhibiting coherent structures,
however, the identification of the relevant modes is often
highly nontrivial.

The plan of this paper is as follows. First of all, the model
and overall dynamical behavior exhibited by the system in
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parameter space are introduced in Secs. II and III. Next, Sec.
IV presents the case for the instability exhibited by LS
through a saddle-loop bifurcation, discussing the main evi-
dences to support this conclusion. Section V goes a step
further in this direction, presenting a more detailed study of
how the dynamics of the system can be understood through a
simplified analysis, by performing an analysis in terms of
modes. Finally, some concluding remarks are given in Sec.
VIIL.

II. MODEL

A prototype model describing an optical cavity filled up
with a nonlinear Kerr medium is the one introduced by Lu-
giato and Lefever [19] with the goal of studying pattern for-
mation in this system. Later studies showed that this model
also exhibits LS in some parameter regions [10,11]. The
model, obtained through the mean-field approximation, de-
scribes the dynamics of the slowly varying amplitude of the
electromagnetic field E(x,f) in the paraxial limit, where x
=(x,y) is the plane transverse to the propagation direction z
on which the slow dynamics takes place. The time evolution
of the electric field can be, then, written as

JE
E:—(l+i0)E+iV2E+EO+i|E2|E, (1)

after suitably rescaling the variables.

The first term in the right-hand side describes cavity
losses (making the system dissipative), E, is the homoge-
neous (plane wave) input field, # the cavity detuning with
respect to E;, and V?=¢?/dx>+#*/dy?* is the transverse La-
placian modeling the diffraction. The sign of the cubic term
indicates the so-called self-focusing case. Notice that in the
absence of losses and an input field, the field can be rescaled
to E— Ee'” to remove the detuning term and Eq. (1) be-
comes the nonlinear Schrodinger equation (NLSE). It is well
documented that in the NLSE in two spatial dimensions an
initial condition with enough energy collapses, namely, en-
ergy accumulates at a point of space leading to the diver-
gence of the solution at a finite time [20]. Cavity losses pre-
vent this collapse, although in the parameter region in which
localized structures are stable their dynamics are closely re-
lated to the collapse regime. Equation (1) has a homoge-
neous steady-state solution E,=E,/[1+i(6-1,)], where I
=|E,* [19]. In the following we use I, together with 6, as
our control parameters.

III. OVERVIEW OF THE SYSTEM BEHAVIOR

Performing a two-parameter study of the system, it has
been shown that a stable regime of LS is found [12]. This
region of existence in the parameter space is shown in Fig. 1.
This regime occurs for /,<1, as at /,=1 the so-called modu-
lation instability takes place and the homogeneous solution
becomes unstable, leading to the formation of hexagonal pat-
terns [19,21]. For /,>1 the homogeneous solution continues
to exist, although it is unstable. The hexagonal patterns are
subcritical, namely, through a S-shaped branch and, thus,
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FIG. 1. Phase diagram of localized structures in the Kerr cavity.
LS are stable in the shaded region and oscillate in the cross-hatched
one (the dot-dashed line between these two regions indicates a Hopf
bifurcation). In the lower part, below the saddle-node bifurcation
(solid line), there are no LS, while in the upper part, above the
saddle-loop bifurcation (dashed line), the system exhibits
excitability.

they coexist with the stable homogeneous solution for a cer-
tain parameter range.

This bistability regime is at the origin of the existence of
stable LS, which appear when suitable (localized) transient
perturbations are applied. The LS can be seen as a solution
that connects a cell of the pattern with the homogeneous
solution. While the existence of LS in this bistable regime is
quite generic in extended systems, the stability of such LS
strongly depends on the particular system. The mechanism
by which LS appear is a saddle-node (or fold) bifurcation, as
can be seen in Fig. 2 for #=1.34 and I,~0.655 (|Ey
~4.5) in which a pair of stable-unstable LS are created
[22,23].

The LS are rotationally symmetric around their center.
Figure 3 shows a transverse cut of typical upper and middle
branch LS. The upper branch LS remains stable for a range
of values of /, and undergoes a Hopf bifurcation leading to a
limit cycle when I is increased [10,12,24]. The region in
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FIG. 2. Bifurcation diagram of stationary localized structures in
the Kerr cavity: max(|E|?) vs I for #=1.34. Solid lines represent
stable solutions and dashed lines unstable ones. The lowest branch
corresponds to the homogeneous solution that becomes unstable at
1;=1.0. The upper and middle branches correspond to the stable and
unstable LS, respectively, and are originated at a saddle-node bifur-
cation. The upper branch becomes Hopf unstable for larger values
of I.
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parameter space where LS oscillate is shown in Fig. 1. Thus,
in these conditions a LS is an autonomous oscillon. An in-
teresting connection to the conservative case is that the
growth of the LS during the oscillations resembles the col-
lapse regime observed for the 2D (or 2+1) NLSE. In this
case, however, after some value is attained for the electric
field E, dissipation arrests this growth.

As I is further increased the amplitude of the limit cycle
grows so that it gets closer to the unstable (middle) branch
structure. It is perhaps surprising that the overall scenario can
be understood qualitatively by resorting to a planar dynami-
cal system, i.e., one with a two-dimensional phase space.
These two phase-space variables correspond to the amplitude
of localized modes of the system (this issue is studied in
detail in Sec. V). In the rest of the paper we will represent
the main features of the behavior exhibited by the system in
terms of these two-dimensional representations.

As shown in the Appendix, using a numerical method
with arbitrary precision it is possible to determine the stabil-
ity of the LS solutions. The spectrum of eigenvalues [of ma-
trix U, Eq. (A5)] for an unstable (middle) branch LS is
shown in Fig. 4. There is only one positive eigenvalue so this
structure has a single unstable direction in the full phase
space. In the reduced, planar phase space, it is a saddle point.
Once it is created, the middle branch LS does not undergo
any bifurcation for the parameter values explored in this pa-
per and, so, remains a saddle point in phase space. When the
limit cycle (corresponding to the oscillating LS) touches the
middle branch the LS undergoes a so-called saddle-loop bi-
furcation, which is the subject of Sec. IV. Beyond this bifur-
cation an excitable regime emerges. This regime will be de-
scribed later in Sec. VI.

IV. SADDLE-LOOP BIFURCATION

A saddle-loop (also known as homoclinic or saddle-
homoclinic) bifurcation is a global bifurcation in which a
limit cycle becomes biasymptotic to a (real) saddle point, or,
in other terms, becomes the homoclinic orbit of a saddle
point (cf. Refs. [25,26]), i.e., at criticality a trajectory leaving
the saddle point through the unstable manifold returns to it
through the stable manifold. Thus, at one side of this bifur-
cation one finds a detached limit cycle (stable or unstable),
while at the other side the cycle does not exist any more,
only its ghost, as the bifurcation creates an exit slit that
makes the system dynamics to leave the region in phase
space previously occupied by the cycle. Thus, after the bi-
furcation the system dynamics jumps to another available
attractor. In the present case this alternative attractor is the
homogeneous solution.

Let us take 6 as the control parameter and assume that the
saddle-loop bifurcation occurs for 6=6g;, and, for conve-
nience, and without lack of generality, let us assume that 6
< fg; corresponds to the oscillatory side, where the limit
cycle is detached of the saddle point, while, in turn, 6> 6g;
corresponds to the side where one only has a fixed-point
solution. The fact that the bifurcation is global, implies that it
cannot be detected locally (a local eigenvalue passing
through zero), but one can still resort to the Poincaré map
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FIG. 3. Transverse cut of two LS, one from the upper (stable)
branch (a) and one from the middle (unstable) branch (b) in Fig. 2
(1,=0.9). The solid (dashed) line corresponds to Re[E] (Im[ET).

technique [34] to analyze it, and, interestingly, the main fea-
tures of the bifurcation can be understood from the knowl-
edge of the linear eigenvalues of the saddle.

The case studied here is the simplest: a saddle point with
real eigenvalues, say A;<<0 and \,>0, in a 2D phase space.
Strictly speaking, in our case the saddle has an infinite num-
ber of eigenvalues (Fig. 4), but only two eigenmodes take
part in the dynamics close to the saddle. This will be studied
in more detail in Sec. V. It is convenient to define the so-
called saddle index v=—\ /N, and saddle quantity o=N\;
+\,. It can be shown [35] that for <0, or ¥>1, at the side
of the saddle-loop bifurcation where one has a detached
cycle, this cycle is stable, while for >0 (v<<1), the cycle is
unstable. Analogously, one can study the period of the cycle
close to this bifurcation, and to leading order it is given by
[27],

1
TOC—)\_IH|0—05L|. (2)

u

This expression is accurate for € close enough to fg;. Inter-
estingly, the transient times spent by a trajectory in the ghost
region after the cycle has ceased to exist, close enough to the
bifurcation point, also show this scaling.

From a numerical viewpoint, we will characterize the oc-
currence of a saddle-loop bifurcation in the system by study-
ing the scaling of the period of the oscillations. The bifurca-
tion point will be characterized by the fact that approaching
from the oscillatory side the period diverges to infinity, and
also because past this bifurcation point the LS disappears and
the system relaxes to the homogeneous solution as shown in
Fig. 5 for 1;=0.9. For this value of I, the saddle-loop takes
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FIG. 4. Spectrum of the unstable (middle branch) LS for @
=1.304 78592 and 1,=0.9.

place at 65, =1.304 785 92. In the figure the time evolution of
the maximum of the LS is plotted for two values of the
detuning differing in 1077, one just above and the other just
below 6g;. Figure 6 contains a logarithmic-linear plot of the
period versus a control parameter, which exhibits, as ex-
pected, a linear slope. Furthermore, one can confront the
value of the slope obtained from the simulations with its
theoretical prediction, Eq. (2), namely, —1/\,,. The full spec-
trum of the middle branch soliton for 6=6; (calculated as
described in the Appendix) is shown in Fig. 4. The agree-
ment between the simulations and theoretical slopes is within
1%.
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FIG. 5. Maximum intensity of the LS as a function of time for
1,=0.9. (a) Oscillatory trajectory for 6=1.3047859 (just below
Os;). (b) Excitable trajectory starting from an initial condition very
close but above the saddle point in the phase space (6
=1.304 786 0, just above 6;).
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FIG. 6. Scaling of the period close to the saddle-loop bifurca-
tion. The critical value 6, is taken as 6.=6g; . Crosses correspond to
numerical simulations while the solid line, arbitrarily positioned,
has a slope —1/\,, with \,,=0.177 obtained from the stability analy-
sis of the unstable LS.

A comment is in place here regarding the spectrum shown
in Fig. 4. The spectrum is formed by a stable continuous
(although numerically discretized) and a discrete spectrum
with a positive (A\,=0.177) and a negative (\;=—2.177) ei-
genvalue. Having this spectrum in mind is perhaps surprising
that one can describe the bifurcation route very well qualita-
tively, and to some extent quantitatively (cf. the observed
scaling law, Fig. 6), resorting to a planar dynamical system
when many modes could be, in principle, involved. The first
mode of the planar theory univocally corresponds to the
positive (unstable) eigenvalue, \,=0.177, while, in first ap-
proximation, the second mode should correspond to the sec-
ond, closest to zero, eigenvalue. This eigenvalue belongs,
however, to a continuum band and the arbitrarily close eigen-
values of its band could play a role in the dynamics, modi-
fying the planar theory. Moreover, considering this mode A
~—0.10 the saddle index v=—N\/N,<1 indicating that the
cycle emerging from the saddle loop should be unstable, al-
though we observe otherwise. The analysis of the modes of
the unstable LS and dimensionality of the phase space is
addressed in detail in the next section.

V. MODE ANALYSIS

In this section we analyze the dynamics in terms of the
modes obtained in performing the stability analysis of the
middle branch LS in a parameter region close to the saddle-
loop bifurcation, as described in the Appendix. By plotting
the spatial profile of the modes one obtains a clue to identify
the relevant modes for the dynamics. It turns out that most of
the modes of the stable spectrum are delocalized. Figure 7
contains a representation of two such delocalized modes. The
bands of extended modes correspond to modes of the homo-
geneous background, and are, except for a radial dependence
coming from the fact that we are using polar instead of Car-
tesian coordinates, basically Fourier modes. The main differ-
ence between these modes is the wave number of their os-
cillations (see Fig. 7). There are, however, two exceptions:
two localized modes, which are the ones corresponding to
the unstable direction and the most stable mode, namely that
with eigenvalue N\;=-2.177. The spatial profile of these two
modes is shown in Fig. 8. Since the dynamics of the LS
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FIG. 7. Stable extended modes from the continuous band. The
top (bottom) panel shows the transverse cut of the mode associated
to the eigenvalue A=-0.1 (A=-1+i0.24) of Fig. 4. The solid
(dashed) line indicates the real (imaginary) parts of the eigenmode.

remains localized in the space, this is an indication that only
these two localized modes take part in the dynamics. To
check this hypothesis we have projected the two trajectories
shown in Fig. 5 for parameters close to the saddle-loop bi-
furcation onto all the eigenmodes of the unstable LS and
observed that only the two localized modes have a significant
amplitude.
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FIG. 8. Transverse cut of the unstable (top) and the most stable
(bottom) modes of the unstable LS. These modes are associated to
the eigenvalues N\,=0.177 and A\;=-2.177 of Fig. 4, respectively.
The solid (dashed) line indicates the real (imaginary) parts of the
eigenmode.
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From the knowledge of the spectrum and the relevant
eigenmodes, we can now explain the stability of the orbits
emerging out of the bifurcation, namely, through the saddle
index introduced above. Computing this index for the two
modes that participate in the saddle-loop bifurcation one ob-
tains v=2.177/0.177>1, which fits perfectly with the fact
that the cycle that detaches at one side of the bifurcation
point is stable. Thus, one may understand that all the dy-
namical instability scenario of the LS can be analyzed quali-
tatively in a planar dynamical system.

A better understanding of the dynamical route, and a jus-
tification of the role of the two participating localized modes
(stable and unstable) can be obtained through a closer scru-
tiny of the linear region, namely, the region close to the
saddle point (or alternatively, the region defined by the sin-
gular map, or close to it). Figure 5(a) contains a time trace of
one such trajectory in the region in which the limit cycle is
stable, but close to the saddle-loop bifurcation. Following the
Appendix we project the deviation of the trajectory from the
unstable LS (saddle point) onto the most stable and the un-
stable eigenvectors of the adjoint Jacobian matrix of the un-
stable LS. These projections are the amplitudes of the un-
stable (3;) and the most stable (3,) modes of the unstable LS
(modes whose profile is shown in Fig. 8). The trajectory
enters the linear region through the stable mode and leaves
the region through the unstable one. This behavior is clear in
the insets of Fig. 9. Next, we reconstruct the qualitative
sketch of the bifurcation shown in Fig. 2 of Ref. [16] from
the knowledge of the projections onto the modes, i.e., we
represent the trajectories before and after the saddle-loop bi-
furcation in mode space. Thus, Fig. 9 contains a quantitative,
reconstructed, 2D phase space from the two localized modes
involved in the transition for a set of parameter values in the
(a) oscillatory and (b) excitable side of the transition. Close
to the saddle, the linear dynamics takes place on a plane, but
away from this point the nonlinear dynamics bends the tra-
jectory out of the plane into the higher-dimensional space,
hence, the apparent crossing of the trajectory in Fig. 9.

This is the final numerical confirmation that the infinite-
dimensional dynamical system on which LS live can be re-
duced to an excellent degree of precision to a 2D dynamical
system, and that the picture is fully consistent with a saddle-
loop bifurcation.

VI. EXCITABLE BEHAVIOR

As in our case the saddle-loop bifurcation involves a fixed
point (the homogeneous solution), on one side of the bifur-
cation, and an oscillation, on the other, the system is a can-
didate to exhibit excitability [18]. It must be stressed that
excitable behavior is not guaranteed per se after a saddle-
loop bifurcation, and, in particular, one needs a fixed-point
attractor that is close enough to the saddle point that destroys
the oscillation. The excitability threshold in this type of sys-
tem is the stable manifold of the saddle point, which implies
that the observed behavior is formally Class I excitability
[18], i.e., the excitability is characterized by response times
that can be infinite (if a perturbation hits exactly the stable
manifold of the fixed point), or, conversely, frequencies start-
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ing from zero. In our system, the excitable threshold reduces
by increasing I; (Fig. 2), since the middle branch LS (the
saddle point) gets progressively closer to the homogeneous
solution (fixed point).

This excitability scenario was shown in Ref. [16], and in
parameter space it is found in the region above the dashed
line corresponding to the saddle-loop bifurcation shown in
Fig. 1. Figure 10 shows the resulting trajectories after apply-
ing a localized perturbation in the direction of the unstable
LS with three different amplitudes: one below the excitabil-
ity threshold (a), and two above: one very close to threshold
(b) and the other well above (c). For the below-threshold
perturbation the system decays exponentially to the homoge-
neous solution, while for the above-threshold perturbations a
long excursion in phase space is performed before returning
to the stable fixed point. The refractory period for the pertur-

PHYSICAL REVIEW E 75, 026217 (2007)

()]

max(|E1?)

max(IE1?)

max{(|E1?)

0O 10 20 30 40 50 80
t
FIG. 10. Time evolution of the maximum intensity starting from
the homogeneous solution (/;=0.9) plus a localized perturbation of
the form of the unstable LS multiplied by a factor 0.8 (a), 1.01 (b),
and 1.2 (c).

bation just above the excitability threshold is appreciably
longer due to the effect of the saddle. The spatiotemporal
dynamics of the excitable localized structure is shown in Fig.
11. After an initial localized excitation is applied, the peak
grows to a large value until the losses stop it. Then it decays
exponentially until it disappears. A remnant wave is emitted
out of the center dissipating the remaining energy.

At this point it is worth noting that neglecting the spatial
dependence Eq. (1) does not present any kind of excitability.
The excitable behavior is an emergent property of the spatial
dependence and it is strictly related to the dynamics of the
2D LS. Without spatial dependence, excitability as a result of
a saddle-loop bifurcation has been observed in different sys-
tems [17,18,28].

Finally, it is interesting to remark that the excitable region
in parameter space is quite large (cf. Fig. 1) and, therefore,
potentially easy to observe experimentally. While this excit-
able behavior belongs to Class I (the period diverges to in-
finity when a perturbation hits the saddle), due to the loga-
rithmic scaling law for the period (2), the parameter range
over which the period increases dramatically is extremely
narrow (cf. Fig. 3(a) in Ref. [16]). Therefore, from an opera-
tional point of view, systems exhibiting this scenario might
not be classified as Class I excitable, as the large period
responses may be easily missed [29].

VII. TAKENS-BOGDANOYV POINT

The saddle-loop (or homoclinic) bifurcation is, in some
sense, not generic. Namely, that a tangency between a limit
cycle and a saddle point occurs exactly such that it happens
simultaneously at both the sides of the stable and unstable
manifolds is, in principle, not to be expected generically. In
fact, also due to the fact that global bifurcations are not al-
ways easy to detect, showing that a dynamical system exhib-
its a certain type of codimension-2 point is the most convinc-
ing argument for the existence of such bifurcations.
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FIG. 11. (Color online) 3D plots showing the transverse inten-
sity profile at different times for the trajectory shown in Fig. 10(b).
The solid lines show a cut of the structure through the center.

A scenario in which the unfolding of a codimension-2
point yields a saddle-loop (or homoclinic) bifurcation is a
Takens-Bogdanov (TB) point [30,31]. Namely, a double-zero
bifurcation point in which a saddle-node bifurcation line and
the zero-frequency limit of a Hopf bifurcation line (thus, no
longer a Hopf line in the crossing point) meet in a two-
parameter plane. The particular feature that, at the TB point,
the Hopf line has zero frequency allows this codimension-2
bifurcation to occur in a 2D phase space. This bifurcation has
to be distinguished from the occurrence of a crossing be-
tween a saddle-node and a Hopf line at nonzero frequency,
known as Gavrilov-Guckenheimer (or saddle node-Hopf
point), that requires a 3D phase space to take place. One can
prove that from the unfolding of a TB point a saddle-loop
line, apart from the saddle-node and Hopf lines, emerges
[30,31] from the TB point.

This can be checked in Fig. 1, in which a two-parameter
bifurcation plot is presented as a function of the two param-
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FIG. 12. Real part (upper panel) and imaginary part (lower
panel) of the eigenvalues of the upper branch LS for three vertical
cuts in Fig. 1 corresponding to three different values 6: squares, 1.7;
triangles, 1.5; rhombs, 1.4 vs the difference between I, and its value
at the saddle-node bifurcation, I3(6).

eters of the system: I, and 6. The problem here is that the
saddle-node and Hopf lines tend to meet only asymptotically,
namely, when #— . In Ref. [16] we checked already that
the distance between the saddle-node and the Hopf lines de-
creases as one increases 6 (the same happens with the
saddle-loop line). By calculating the eigenvalues, it can be
seen that, indeed the frequency (viz. their imaginary part)
goes to zero as one approaches the TB point. Figure 12 dis-
plays the two eigenvalues with largest real part of the upper
branch LS for parameter values corresponding to three ver-
tical cuts of Fig. 1. Open symbols correspond to eigenvalues
with a nonzero imaginary part while filled symbols are asso-
ciated to real eigenvalues. Where the open symbols cross
zero in the upper panel of Fig. 12 signals the Hopf bifurca-
tion while where the filled symbols cross zero signals the
saddle-node bifurcation. The origin for the three plots is
taken at the saddle-node bifurcation. At some point along the
branch of the two complex conjugate eigenvalues associated
to the Hopf bifurcation the imaginary part vanishes leading
to two branches of real eigenvalues, the largest of which is
precisely the responsible for the saddle-node bifurcation. As
detuning increases the Hopf and saddle-node bifurcation
points get closer and closer but the structure of eigenvalues
remains unchanged so that when the Hopf and saddle-node
bifurcation will finally meet the Hopf bifurcation will have
zero frequency, signaling a TB point.

The TB point takes place asymptotically in the limit of
large detuning @ and small pump Ej. In this limit Eq. (1)
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becomes the (conservative) NLSE [10]. The Hopf instability
in this limit was studied in Ref. [24], where evidence of the
double-zero bifurcation point was given, however the un-
folding leading to the scenario presented here was not ana-
lyzed.

VIII. CONCLUDING REMARKS

In this work a detailed study of the instabilities of LS
solutions in homogeneously pumped nonlinear Kerr cavities
and the associated excitability route first reported in Ref.
[16] is carried out. In that study, it was shown that the insta-
bility that leads to the destruction of oscillatory LS found in
this system can be characterized by a saddle-loop (ho-
moclinic) bifurcation, in which, in phase space, the oscilla-
tion (a limit cycle) becomes the homoclinic orbit of a saddle
point. This scheme is able to explain accurately quantitative
aspects of the transition, like scaling law for the divergence
of the period of the oscillation at the bifurcation point.

After a close scrutiny there is at least an aspect that may
sound puzzling in this picture: the system under study is
described by a 2D nonlinear partial differential equation,
with an infinite-dimensional phase space. Instead, the re-
ported saddle-loop bifurcation minimally needs a 2D dimen-
sional system with a limit cycle and a saddle point, which is
coherent with the fact that the bifurcation is born at a
Takens-Bogdanov codimension-2 point. One can devise a
kind of slaving principle, in which the slowest modes (with
the closest eigenvalues to zero) dominate the slow dynamics.
However, the two leading eigenvalues of the saddle point
close to bifurcation do not explain the scenario (give the
wrong stability for the limit cycle). For all this, we have
engaged in showing the reason why such a 2D reduction is
successful in explaining the dynamics, and, in particular,
what happens with the stability of the emerging limit cycle.

The main result of this paper is that it is possible to re-
cover quantitatively, from the full system, the qualitative 2D
sketch of the saddle-loop bifurcation, in which two modes
participate: the single unstable mode, and a kind of conjugate
stable mode (buried in the sea of stable modes), with the
property that both modes are the only two localized modes of
the system.

Apart from this kind of fundamental result, the main in-
terest of the present work is to prove excitability in an ex-
tended system as an emerging property, i.e., not present lo-
cally in the spatiotemporal system, but emerging through one
of its solutions. Excitability is possible in classes of systems
in which an oscillation is destroyed at a bifurcation yielding,
at the other side, a fixed-point solution. In the present sce-
nario, mediated by a saddle-loop bifurcation, excitability is
not generic, and requires the availability of a close-enough
fixed-point solution: the homogeneous solution, in the
present case.
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APPENDIX

In this appendix we describe in some detail the numerical
methods used throughout this paper. For numerical simula-
tions, we integrate Eq. (1) using a pseudospectral method
where the linear terms in Fourier space are integrated exactly
while the nonlinear ones are integrated using a second-order
in time approximation [32]. Periodic boundary conditions are
used, since they are convenient for the pseudospectral code.
The system size is large enough to ensure that the electric
field reaches the homogeneous steady state well before the
boundaries. A square lattice of size 512X 512 points was
used. The space discretization was taken dx=0.1875 while
the time step was dr=1072.

To study the stability of the stationary LS solutions of Eq.
(1), we set E=E(1+A), so that A(x,y) describes the solution
without the homogeneous background,

9A
P (1+i0)A +iV2A + il ,(2A + A* + A2+ 2|A|* + |A]*A),

(A1)

where Eq. (A1) is obtained directly from Eq. (1), without any
approximation. To obtain the stationary solutions one may
numerically solve the right-hand side of Eq. (A1) equated to
zero. However, since we have two spatial dimensions and the
self-focusing dynamics involve very large wave numbers
with very fast dynamics, this is a difficult and time-
consuming task. Instead, we can take advantage of the fact
that the LS structures are rotationally symmetric with respect
to their center, so that they can be described in terms of the
1D radial equation for A(r),

JA , (& 19 . ., X
—=—(1+iOA+i| 5 +—— |JA+i[[QA+ A"+ A%+ 2|A|
ot Pr ror

+]AJ%A). (A2)

Steady-state LS solutions for this system, both stable and
unstable, are found by equating to zero the left-hand side of
Eq. (A2). The boundary conditions for this problem are such
that the derivatives are zero at the boundaries, i.e., dA/dr(r
=0)=0A/dr(r=L)=0, where the system size L is large
enough to ensure that the electric field approaches smoothly
the homogeneous solution [A(r) —0] before reaching the
boundary. Discretizing the radial coordinate one obtains a set
of coupled nonliner equations which can be solved using a
Newton-Raphson method [33]. Then, bifurcation continua-
tion techniques [31] are used to explore the region of exis-
tence of both stable and unstable stationary LS in parameter
space.

The stability of steady-state LS against radial and azi-
muthal perturbations is obtained, cf. Ref. [33], by linearizing
Eq. (A1) around the corresponding, numerically obtained,
stationary solution A;¢. This yields a linearized equation for
the time evolution of the perturbations JA(r,,?)

026217-8



PHASE-SPACE STRUCTURE OF TWO-DIMENSIONAL...

=A(r,¢,t)—A4(r). The solutions of the linear problem can

be written as
SA =[R,(r)e™? + R_(r)e"™%]exp(\1), (A3)

where m is the wave number of the azimuthal perturbation.
This yields the eigenvalue problem

U =)\, (A4)
where W=(R,.R")" and U=(, 7). with
U,=-(1 +,-9)+,<_+li_ m2)
Proror 1
+i2l (1 + AL+ ALs+ AL,
U_=il(1+2A,5+A7y), (A5)

is the Jacobian. For purely radial perturbations (m=0) R_
=R,. The matrix U is time independent as it is evaluated at
the stationary LS (stable or unstable) under study.

The problem reduces, thus, to finding the eigenvalues A\
and eigenvectors W, where it is important to mention that U
is a complex matrix and, thus, the eigenvectors are complex
quantities in general. Due to the symmetry of U the eigen-
values are either real or pairs of complex conjugates. This
last property stems from the fact that, considering the real
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and imaginary parts of A;g, U can be rewritten as a real
matrix. We note also that, due to the discretization of the
space, W becomes a vector whose dimension is 2N. The set
of eigenvectors W, (i=1,2N) form a basis, and their ampli-
tudes define a natural phase space where studying the dy-
namics of LS.

However, U is not a self-adjoint operator so, the set of
eigenmodes does not form an orthogonal basis. To find the
components of a field profile on a mode W; one has to
project it onto the corresponding eigenmode ®; of the adjoint
Jacobian matrix UT. In Sec. V we are interested in the devia-
tion of the field profile from the unstable LS (saddle point)
SA=(8A,5A")". In particular, we calculate the components
of this deviation on the unstable and the most stable eigen-
modes of the Jacobian matrix of the unstable LS. These am-
plitudes are given by B;=[®! 6A dr (i=1,2), where ®, is
the unstable and @, the most stable eigenmodes of the ad-
joint Jacobian matrix.

We should note that in the work reported here the LS are
always inside the region in which they are stable versus azi-
muthal perturbations [12], so all the instabilities described in
the text are obtained for m=0. As a final comment, the sta-
bility problem of stationary LS, which in principle live in an
infinite-dimensional phase space, is reduced numerically to a
stability problem in a finite-dimensional, albeit large, phase
space.
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